Games, graphs, and machines

٠

Relations

July 26, 2024

Reminders

- 1. Join zulip!
- 2. Workshops start next week.
- 3. Homework 1 due next Friday.
- 4. Reflective check-in due Monday.

The number of relations

Suppose $A = \{1, 2, 3\}$ and $B = \{1, 2, 3, 4\}$. How many relations are there between A and B? 12 2-1 Valid relation! 2 Relation = Subset of AxB 12 etc. frelations = pow (A~B)

We say that a relation $R \subset S \times S$ is *reflexive* if for all $s \in S$, we have $(s, s) \in \mathbf{A}^{\cdot} \mathbb{R}$

Are the following relations reflexive?

1. \leq on \mathbb{R} \checkmark 2. < on \mathbb{R} \checkmark 3. the relation R on \mathbb{Z} defined by $(a, b) \in \mathfrak{Z}$ if 2 divides a + b. \checkmark 4. Same as above, but with 2 replaced by 3. \checkmark $e \cdot \mathfrak{R}$.

Symmetric relations

We say that a relation $R \subset S \times S$ is *symmetric* if for all $s \in S$ and $t \in S$, if $(s, t) \in R$ then $(t, s) \in R$.

Find a relation on $\ensuremath{\mathbb{Z}}$ that is symmetric and one that is not symmetric.

Transitive relations

We say that a relation $R \subset S \times S$ is *transitive* if for all $a, b, c \in S$ if $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$.

Find a relation on \mathbb{R} that is transitive and one that is not transitive.

Are the following relations transitive?

- $1.\ \le \text{on}\ \mathbb{R}$
- $2.\ < \text{on}\ \mathbb{R}$
- 3. the relation R on \mathbb{Z} defined by $(a, b) \in \mathbb{Z}$ if 2 divides a + b.
- 4. Same as above, but with 2 replaced by 3.

Input/Output relation

.

Consider $R \subset \mathbb{R} \times \mathbb{R}$ defined by

$$R = \{(x, y) \mid x^3 - xy + x - 1 = 0\}.$$

Is *R* the input/output relation of a function $f : \mathbb{R} \to \mathbb{R}$?